Skip to content

Posts tagged ‘predictive analytics’

29
May

Love, Sex and Predictive Analytics: Tinder, Match.com, and OkCupid


Have we got a girl for you” Some very sophisticated machine learning and predictive analytics models are powering the online dating or hookup world.

A lot of innovation is taking place around real-time, geo-location based matching services.  Coinciding with the trend toward mobile, there is a meaningful shift of usage from desktop to mobile devices. The mobile trend also enables tailored dating products to meet the varying romantic and hookup preferences of users.

Take for Match.com which debuted its online dating first site in the U.S. in April 1995.  Today, the Match.com brand hosts sites in 24 countries, in fifteen different languages spanning five continents.  Match.com offers an interactive way for singles to meet other singles with whom they might otherwise never cross paths.

How to model and predict human attraction? Match.com is powered by Synapse algorithm. Synapse learns about its users in ways similar to sites like Amazon, Neflix, and Pandora to recommend new products, movies, or songs based on a user’s preferences.

IntelligentMatching (1)

Enabling dating in a digital world… Match.com uses Chemistry.com to do personalized surveys and get detailed preference data. But when it comes to matching people based on their potential love and mutual attraction, however, analytics get significantly more complex when you are attempting to predict mutual match… the person A is a potential match for person B…. but with high probability that person B is also interested in person A. Read more »

10
Mar

Fan Engagement and Wearables: Disney MyMagic+


MagicBandA satisfying experience is the driver of any business’s revenue growth. Disney Theme Parks is no exception. Disney is executing a guest (and fan) personalization strategy leveraging wearables (and analytics) to track, measure and improve the overall park experience. The goal is increase sales, return visits, word of mouth recommendations, loyalty and brand engagement across channels, activities, and time.

Wearables are the next big thing.  The new crop of gadgets — mostly worn on the wrist or as eyewear — will become a “fifth screen,” after TVs, PCs, smartphones, and tablets.

Wearables are already being used to monitoring vital signs, wellness and health. Devices like Fitbit, UP, Fuelband, Gear2 track activity, sleep quality, steps taken during the day. Consumers of all sorts — fitness buffs, dieters, and the elderly — have come to rely on them to capture and aggregate biometric data.

What most people don’t understand is how powerful wearables (coupled with  analytics) can be in designing new user experiences.  Businesses thrive when they engage customers by creating a longitudinal predictive view of each customer’s behavior. To understand the wearables use cases and potential we did a deep dive into a real-world application at Disney Theme Parks.

Wearable Computing at Disney: MyMagic+

Read more »

12
Aug

Quantified Self, Ubiquitous Self Tracking = Wearable Analytics


google_glassesThe future is here. It’s just not evenly distributed yet.”   – William Gibson

Self-tracking,  Seamless Engagement and Personal Efficiency improvement’s new frontier is Personalized Big Data and Digital Health. This is really becoming a viable idea around wearable and sensor computing and the basis for new data platform wars.

The new platforms for digital life or data driven life — that collect, aggregate and disseminate — will  cover a wide range of new User Experience  (UX) use cases and end-points… medical devices, sensor-enable wristwear, headset/glasses, tech-sensitive clothing.  All of them are going to collect a lot of data, low latency analytics, and enable  data visualization. Several new firms are entering the activity tracker market LG (Life Band Touch), Sony (the Core), Garmin (Vivofit), Glassup, Pebble, JayBird Reign etc.

Data collection is just one piece of the solution. The foundation for personalized big data is Descriptive and Predictive Analytics.  Ok…What do i next? what is the suggestion? in the form of predictive search (automated deduction or augmented reality).

How do i discover useful patterns, analyze, visualize, share, query and mobilize the collected data?  A wide range of start-ups – Cue, reQall, Donna, Tempo AI, MindMeld, Evernote, Osito, and Dark Sky – and big companies like Apple, Google, Microsoft, LG and Samsung are working on predictive apps — aimed at enabling new robo-assistants that act as personal valets, anticipating what you need before you ask for it.

DataLeverage

Read more »

19
Jan

Multi-channel to Omni-channel Retail Analytics: A Big Data Use Case


MULTI-CHANNEL is simply having multiple channels through which you buy, market, sell, and fulfill.

CROSS-CHANNEL has the ability to see all of a customer’s information across all channels enables more personalized offers based on their brand relationship.

OMNICHANNEL weaves all the touchpoints of the products and services of the brand into a  seamless fabric  of all phases of the  customer’s brand experience.

Which one are you?

Let’s face it – The old uni-channel retail model is dying in some cases and changing in others.  E-commerce is driving nearly all retail growth. Digital customers want simple, consistent, and relevant experiences across all channels, touchpoints, mobile screens, smart watches and other devices.

Read more »

5
Jan

“Next Best Offer” Analytics: Ebay, Schwan Foods, Netflix and Others


Facebook understands personalization. Do you?  Facebook builds a custom Web page every time you visit. It pores over all the actions your friends have taken—their photos, their friends, the songs they listen to, the products they like—and determines in two-hundredths of a second which items you might wish to see, and in what order.

[SOURCE: Bloomberg Businessweek, “Facebook: The Making of 1 Billion Users,” Ashlee Vance, October 4, 2012]

——————————–

A common CMO issue… Digital marketing is not working. Visits are up but sales are down, Site conversion is trending down. E-mail open rates are ok but click thru rates are down. What do we do?

  • Can you predict what customers want before they do?
  • Can you formulate the “next best action”?
  • Can offers be better targeted or timed to improve customer acquisition and conversion?

Growing the customer relationship is the perpetual challenge of all companies. To change status quo, EBay bought Hunch to help improve its recommendation services.  EBay uses Hunch’s “taste graph” technology to provide its users with non-obvious recommendations for items based on their unique tastes.  E-bay applied Hunch’s technology to other areas such as search, advertising and marketing, in order to better surface product information based on its customers’ tastes.

It’s becoming a data-driven world. We are awash in data, but the problem is figuring out what we are supposed to do with it.

Data Driven Commerce & Retailing

Recommendations and promotions are the most effective when you target them on customer behaviors.

Recommendation and decision engines, an area of predictive analytics and decision management, is quite active right now in the digital arena.  The early online pioneer was Amazon.com which used collaborative filtering to generate “you might also want”  or “next best offers” prompts for each product bought or page visited.

Next best action, next best offer, interaction optimization, and experience optimization all share similar structure. A typical targeted offer analytics model is shown in the figure (source: blog.strands.com).

The premise of data driven commerce & retailing is simple:

  • Acquire the right customers
  • Offer the right products
  • Personalize relevant offers
  • Focus on the Right timing & Channels

To understand the impact that recommendation engines can have on sales, let’s look at a traditional brick-and-mortar firm doing direct to home face-to-face selling…Schwan Food.

Schwan Food – The Business Problem

The Schwan Food Company is a multibillion-dollar, privately owned company with 17,000 employees in the United States. Based in Marshall, Minnesota, Schwan sells frozen foods from home-delivery trucks, in grocery-store freezers, by mail and to the food service industry. Schwan produces, markets, and distributes products developed under brands such as Schwan’sRed BaronFreschettaTony’sMrs. Smith’s,EdwardsPagoda Express and many others.

Schwan’s Home Service, the company’s flagship business unit, is the largest direct-to-home food delivery provider in the United States. Sales are done door-to-door by 6,000 roving sales people who deliver frozen products to homes of three million customers across the country.

Schwan home sales were listless for four straight years, beset by high customer churn and inventory pileups.  So the challenge was: How to spark sales? How to get an uplift of 3-4%?

The Solution

At the point of customer contact…Schwan wanted to personalize the experience. The goal is to dig deep into customer data, generate insights and engage customers in innovative ways.

What are primary drivers of sales? Schwan realized that by recommending to the customer,  products that fit their profile, purchase history and interests there is a higher revenue potential for cross-sell and up-sell.

The challenge was to overhaul the current crude recommendation program that existed. Most firms like Schwan provide to the sales team data from the SAP back-end. Most  of this data is stale and not dynamic.  For instance, sales people could look at six weeks of orders, and suggest purchases from that list.

The Execution

To completely overhaul the recommendation engine. Schwan began an analytics project with Opera Solutions.

The analytics project took it into more sophisticated territory: Matching seemingly disparate customers with similar purchase patterns in their past. Opera calls them finding “genetic twins.” It added ways to track whether customers’ spending was fading from certain categories—say, breakfast foods—and offered product suggestions and discounts to keep the spending intact.

How does this work? At the core of a recommendation engine is predictive modeling. This identifies and mathematically represents underlying relationships in historical data in order to explain the data and make predictions or classifications about future events.

Predictive models analyze current and historical data on individuals to produce easily understood metrics such as scores. These scores rank-order individuals by likely future behavior, e.g., their likelihood of responding to a particular offer.

The Result

Schwan’s database is now pushing out more than 1.2 million dynamically-generated customer recommendations every day, sent directly to drivers’ handheld devices. Opera says Schwan’s revenues are up 3% to 4% because of it.

It would be interesting to see the correlation between Schwan’s customer satisfaction scores and shopping basket mix with recommendations versus non-recommendations.

Netflix Real-Time Recommendation

The Netflix movie recommendation contest (blending of different statistical and machine-learning techniques) has been widely followed because its crowdsourcing lessons could extend beyond improving movie picks. The outcome:  CineMatch recommendation solution built around a huge data set — 100+ million movie ratings — and the challenges of large-scale predictive modeling.

Netflix’s overview of the competition:

We’re quite curious, really. To the tune of one million dollars.

Netflix is all about connecting people to the movies they love. To help customers find those movies, we’ve developed our world-class movie recommendation system: CinematchSM. Its job is to predict whether someone will enjoy a movie based on how much they liked or disliked other movies. We use those predictions to make personal movie recommendations based on each customer’s unique tastes. And while Cinematch is doing pretty well, it can always be made better.

Now there are a lot of interesting alternative approaches to how Cinematch works that we haven’t tried. Some are described in the literature, some aren’t. We’re curious whether any of these can beat Cinematch by making better predictions. Because, frankly, if there is a much better approach it could make a big difference to our customers and our business.

So, we thought we’d make a contest out of finding the answer. It’s “easy” really. We provide you with a lot of anonymous rating data, and a prediction accuracy bar that is 10% better than what Cinematch can do on the same training data set. (Accuracy is a measurement of how closely predicted ratings of movies match subsequent actual ratings.) If you develop a system that we judge most beats that bar on the qualifying test set we provide, you get serious money and the bragging rights. But (and you knew there would be a catch, right?) only if you share your method with us and describe to the world how you did it and why it works.

Serious money demands a serious bar. We suspect the 10% improvement is pretty tough, but we also think there is a good chance it can be achieved. It may take months; it might take years. So to keep things interesting, in addition to the Grand Prize, we’re also offering a $50,000 Progress Prize each year the contest runs. It goes to the team whose system we judge shows the most improvement over the previous year’s best accuracy bar on the same qualifying test set. No improvement, no prize. And like the Grand Prize, to win you’ll need to share your method with us and describe it for the world.

Netflix announcement of winner:

It is our great honor to announce the $1M Grand Prize winner of the Netflix Prize contest as teamBellKor’s Pragmatic Chaos for their verified submission on July 26, 2009 at 18:18:28 UTC, achieving the winning RMSE of 0.8567 on the test subset.  This represents a 10.06% improvement over Cinematch’s score on the test subset at the start of the contest.

Interestingly several people think that “what your friends thought” feature to be extremely accurate in predicting and suggesting movies…more than the recommendation feature.

Netflix announced a second recommendation contest that was later discontinued. Contestants were asked to model individuals’ “taste profiles,” leveraging demographic and behavioral data. The data set — 100 million entries will include information about renters’ ages, gender, ZIP codes, genre ratings and previously chosen movies. Unlike the first challenge, the contest will have no specific accuracy target.  $500,000 will be awarded to the team in the lead after six months, and $500,000 to the leader after 18 months. This contest was cancelled in May 2010 after a legal challenge that it breached customer privacy with the first contest.

Building on Netflix model, California physicians group Heritage Provider Network Inc. is offering $3 million to any person or firm who develops the best model to predict how many days a patient is likely to spend in the hospital in a year’s time. Contestants will receive “anonymized” insurance-claims data to create their models. The goal is to reduce the number of hospital visits, by identifying patients who could benefit from services such as home nurse visits.

I expect to see a lot more activity around Predictive Recommendations as mobile technology makes it easier to influence buyers or convert prospects into customers. Also technology like Hadoop makes it easier to build predictive insights that can be leveraged in real-time.

E-mail Based Recommendations

In multichannel customer-facing business processes, marketers must continually and automatically optimize all offers and customer interactions through all channels, business processes,and touchpoints such as sales, marketing, and customer service. E-mail based recommendation models are pretty advanced.

The same push based recommendation model can be leveraged via e-mail (in addition to mobile handheld direct sales). Williams-Sonoma, all things kitchen and cooking, has a database of 60M households tracking variables like income, number of children, housing values, etc. They leverage these variables in e-mail targeting programs.

Offers embedded in e-mail are tailored to the recipient at the moment they’re opened. In less than 250 milliseconds, analytics software can assemble an offer based on real-time information: data including location, age, gender, and online activity both historical and immediately preceding, along with inventory data. These offers have lifted conversion rates by as much as 30%—dramatically more than similar but uncustomized ad campaigns.

Bottomline

Targeting customers with perfectly customized recommendations at the right moment across the right channel is sales and marketing’s holy grail. As the ability to capture and analyze highly granular data improves, such recommendations are possible.

Perfecting these “next best product recommendation” models involves four steps: defining sales and marketing objectives; gathering detailed primary or secondary data about your customers, your products, and the contextual prompts that influence customers to buy; and using data analytics and business rules to devise and execute offers.

As the amount of data that can be captured grows and the number of channels for interaction proliferates, companies that are not providing recommendations to influence buyers will only fall further behind.

Notes (and Interesting Factoids)

  1. A recommendation engine generates tailored, and context-sensitive recommendations to guide decisions and actions taken by humans, automated systems, or a combination thereof.  For Recommendation Engines background:  http://en.wikipedia.org/wiki/Recommender_system
  2. In the late 1990s, predictive recommendations were created by Amazon and other online companies that developed “people who bought this also bought that” offers based on relatively simple cross-purchase correlations; they didn’t depend on substantial knowledge of the customer or product attributes.
  3. See of Opera Solutions work at Schwan’s: Dennis Berman’s article in the Wall Street Journal, “So, What’s Your Algorithm?” 
  4.  Additional Insights that can improve Sales Effectiveness
    • What are the characteristics of my most loyal customers? Least loyal?
    • How do customers feel about our company and products?
    • Which items drive sales? Which items are frequently purchased together?
    • If I discount an item by X, what impact will it have on sales and revenue?
    • How do my internet sales compare to brick and mortar in terms of revenue and cost?
    • Which prospects should I target to convert into loyal customers? What products or offers would be most effective?
    • Will my inventory levels meet sales forecast? When will we run out of stock?
  5. Every vendor recognizes the power of data.  For instance, Salesforce wants to be the center of data-driven customer strategy. To that end, the company introduced the Internet of Things Cloud @ Dreamforce 2015, which is supposed to pull in data from devices, sensors and non-IoT sources like app behavior and social streams. In Salesforce’s view, it’s all in the service of the customer, grabbing data and wrapping a rules engine around it to drive automated Next Best Offers or Actions for the customer.
13
Aug

Analytics-as-a-Service: Understanding how Amazon.com is changing the rules


“By 2014, 30% of analytic applications will use proactive, predictive and forecasting capabilities”  Gartner Forecast

“More firms will adopt Amazon EC2 or EMR or Google App Engine platforms for data analytics. Put in a credit card, by an hour or months worth of compute and storage data. Charge for what you use. No sign up period or fee. Ability to fire up complex analytic systems. Can be a small or large player”    Ravi Kalakota’s forecast 

—————————-

Big data Analytics = Technologies and techniques for working productively with data, at any scale.

Analytics-as-a-Service is cloud based… Elastic and highly scalable, No upfront capital expense. Only pay for what you use, Available on-demand

The combination of the two is the emerging new trend.  Why?  Many organizations are starting to think about “analytics-as-a-service” as they struggle to cope with the problem of analyzing massive amounts of data to find patterns, extract signals from background noise and make predictions. In our discussions with CIOs and others, we are increasingly talking about leveraging the private or public cloud computing to build an analytics-as-a-service model.

Analytics-as-a-Service is an umbrella term I am using to encapsulate “Data-as-a-Service” and “Hadoop-as-a-Service” strategies.  It is more sexy 🙂

The strategic goal is to harness data to drive insights and better decisions faster than competition as a core competency.  Executing this goal requires developing state-of-the-art capabilities around three facets:  algorithms, platform building blocks, and infrastructure.

Analytics is moving out of the IT function and into business — marketing,  research and development, into strategy.  As result of this shift, the focus is greater on speed-to-insight than on common or low-cost platforms.   In most IT organizations it takes anywhere from 6 weeks to 6 months to procure and configure servers.  Then another several months to load, configure and test software. Not very fast for a business user who needs to churn data and test hypothesis. Hence cloud-as-a-analytics alternative is gaining traction with business users.

Read more »

%d bloggers like this: