Skip to content

Posts tagged ‘Microstrategy’

21
Jul

Consumerization of BI: Data Visualization Competency Center


heatmap-pgWhat do users want? Self-service, interactive analytics with all kinds of datasets with instant response times, no waiting.

Today there is a strong move towards “Consumerization of BI” as business users are demand the same speed, and ease of use from their enterprise applications as their at-home software.

Consumerization of BI (“data at your fingertips”) means:

  • Help employees see and understand data
  • Helping employees gain insight into their data using simple drag-and-drop operations to solve business problems
  • Ability to quickly change filters and query conditions and conduct top down analysis via drill down
  • Make analytics fast, easy, interactive, and most importantly – useful

In every major corporation there is a renewed push to industrialize and improve data visualization and reporting capabilities.

The challenge is not in procuring the next greatest tool or platform but how to organize the people, process and assets effectively to create value, reduce training and support costs.  In other words, how to facilitate and create a flexible operating model for data mining and visualization delivery that provides discipline at the core while giving the business the agility that they need to make decisions or meet client needs?

Decision making is a core business activity that requires facts and insights. Slow, rigid systems are no longer useful enough for sales, marketing and other business users or even IT teams that support them. Competitive pressures and new sources of data are creating new requirements. Users are demanding the ability to answer their questions quickly and easily.

So the new target state is to empower business users along the Discover, Decide and Do lifecycle:

  • Discover new insights by rapidly accessing and interrogating data in ways that fit how people naturally think and ask questions.
  • Decide on best actions by publishing dashboards, collaborating with others, discussing insights and persuading others through data presented in an interactive application (“app”) rather than in a static view.
  • Do what is best at each decision point with confidence, based on the consensus that develops when new data is aggregated and explored with multiple associations and different points of view. Teams can take action more rapidly and move projects forward more effectively when everyone understands the data underlying decisions.

The challenge for business users is data discovery and ease-of-use. They want to focus on business questions that require aggregation and visualization. They want the interactive ability to quickly change filters and query conditions.

The challenge for infrastructure and application teams in every corporation is to deliver new easy-to-use platforms to their business partners quickly and consistently while maintaining governance and control.

To meet both sets of requirements, best practice firms are creating Data Mining and Visualization Competency Center or Centers of Excellence (DV-CoE) to ensure that the people, process and technology investments are not duplicated and addressed in a way that maximizes ROI and enhances IT-Business partnership. I have seen many cases where not having a proper structure leads to redundant projects and sub-optimal results. Read more »

7
Sep

Do you have BI Performance Anxiety ?


BI is key to enabling companies to turn oceans of data into predictive models and actionable decisions. However, a survey of 353 executives in large companies, reported that their chief BI concern was the performance of various BI solutions.

Development, support and enhancement teams are typically deployed to address BI performance challenges with varied success.  But most companies don’t have a dedicated focus on performance.

A BI Center of Excellence (BI CoE) measured by performance KPIs and service metrics is one solution to this problem. This is not an area that traditionally draws high-level attention or is featured in a dedicated CoE initiative, yet in the right circumstances it offers unique value. Read more »

13
Aug

Analytics-as-a-Service: Understanding how Amazon.com is changing the rules


“By 2014, 30% of analytic applications will use proactive, predictive and forecasting capabilities”  Gartner Forecast

“More firms will adopt Amazon EC2 or EMR or Google App Engine platforms for data analytics. Put in a credit card, by an hour or months worth of compute and storage data. Charge for what you use. No sign up period or fee. Ability to fire up complex analytic systems. Can be a small or large player”    Ravi Kalakota’s forecast 

—————————-

Big data Analytics = Technologies and techniques for working productively with data, at any scale.

Analytics-as-a-Service is cloud based… Elastic and highly scalable, No upfront capital expense. Only pay for what you use, Available on-demand

The combination of the two is the emerging new trend.  Why?  Many organizations are starting to think about “analytics-as-a-service” as they struggle to cope with the problem of analyzing massive amounts of data to find patterns, extract signals from background noise and make predictions. In our discussions with CIOs and others, we are increasingly talking about leveraging the private or public cloud computing to build an analytics-as-a-service model.

Analytics-as-a-Service is an umbrella term I am using to encapsulate “Data-as-a-Service” and “Hadoop-as-a-Service” strategies.  It is more sexy 🙂

The strategic goal is to harness data to drive insights and better decisions faster than competition as a core competency.  Executing this goal requires developing state-of-the-art capabilities around three facets:  algorithms, platform building blocks, and infrastructure.

Analytics is moving out of the IT function and into business — marketing,  research and development, into strategy.  As result of this shift, the focus is greater on speed-to-insight than on common or low-cost platforms.   In most IT organizations it takes anywhere from 6 weeks to 6 months to procure and configure servers.  Then another several months to load, configure and test software. Not very fast for a business user who needs to churn data and test hypothesis. Hence cloud-as-a-analytics alternative is gaining traction with business users.

Read more »

3
Aug

Big Data, Analytics and KPIs in E-commerce and Retail Industry


  • How to convert Lookers to Bookers…
  • How to create unique and effective Digital Experiences that impact probability of purchase or likelihood of return.
  • What offers might result in higher “take rates”

The change in consumer behavior and expectations that e-commerce, mobile and social media are causing is hugely significant – big data and predictive analytics will separate brand/retail winners from losers. This won’t happen overnight but the transformation is for real.

Retail Industry makes up a sizable part of the world economy (6-7%) and covers a large ecosystem –  E-commerce, Apparel, Department Stores, Discount Drugstores, Discount Retailers, Electronics, Home Improvement, Specialty Grocery, Specialty Retailers and Consumer Product Goods suppliers.

Retail is increasingly is looking like a barbell – a brand oriented cluster at the high-end, a very thin middle, and a price sensitive cluster at the low end. The consumerization of technology is putting more downward pricing pressure in an already competitive “middle” retail environment. The squeeze is coming from e-commerce and new “point, scan and analyze” technologies that give shoppers decision making tools — powerful pricing, promotion and product information, often in real-time. Applications in iPhones and Droid, like  Red Laser can scan barcodes and provide immediate price, product and cross-retailer comparisons. They can even point you to the nearest retailer who can give you free shipping (total cost of purchase optimization). This will lead to further margin erosion for retailers that compete based on price (a sizable chunk of the market in the U.S, Europe and Asia).

Data analytics is not new for retailers. Point of sale transactional data obtained from bar-codes first appeared in 1970s. A pack of Wrigley’s chewing gum was the first item scanned using Universal Product Code (UPC) in a Marsh Supermarket in Troy, Ohio in 1974.  Since then, retailers have been applying analytics to get even smarter and speedup the entire industry value chain.

Consumer Goods Value Chains

More recent use cases of retail analytics  include: Read more »

24
Jul

Proactive Risk Management – New KPIs for a Dodd-Frank World


The financial crisis of 2007–2011 is driving widespread changes in the U.S regulatory system. Dodd-Frank Act addresses “too big to fail” problem by tightening capital requirements and supervision of large financial firms and hedge funds. It also creates an “orderly liquidation authority” so the government can wind down a failing institution without market chaos.

Financial institutions will be spending billions to strengthen, streamline and automate their recordkeeping, risk management KPIs and dashboard systems. The implications on Data Retention and Archiving, Disaster Recovery and Continuity Planning have been well covered. But leveraging Business Analytics to proactively and reactively manage/monitor risk and compliance is an emerging frontier.

We believe that Business Analytics and real-time data management are poised to play a huge role in regulating the next generation of risk and compliance management in Financial Services industry (FSI).  in this posting, we are going to examine the strategic and structural challenges, the dashboards and KPIs of interest that provide feedback, and what an effective execution roadmap needs to be for every organization.

Read more »

18
Jul

Mobile BI – Business KPIs and Dashboards “on-the-go”


 

mobile-applicationsWho doesn’t want to achieve faster “time-to-information” and shorter “time-to-decision” for executives and managers with mobile BI?  Who doesn’t want to disseminate insights or KPIs to front-line employees, such as field sales representatives, line of business managers, and field service employees?

The question is not whether Mobile BI is a good idea but how to execute this program in a low-cost way?  How to design and deploy eye-popping “wow” apps? How to support, maintain and enhance these apps which are constantly changing?  What technology and infrastructure to put in for a national or global deployment? Who is going to fund all this plumbing – corporate, LoB or IT?

Business Analytics solutions for “always-on” 3/4G enabled mobile devices – iPads, iPhones, tablets, smart phones – are becoming prevalent as the form factor becomes appropriate for BI.   We are increasingly seeing firms build state-of-the-art dashboard solutions for iPads. The “post-desktop” apps provide senior management with intuitive interactive access to the company’s most important business KPIs and dealing with data overload.

Tablets, 4G Wireless and next gen displays (+gesture based, verbal interfaces) have enabled new productivity improvements and better ways to consume information, perform ad-hoc querying and scenario planning. Dashboard, heatmaps and scorecards on the iPad, iPhones and Androids are intuitive, attractive, powerful, available at any time and any place: a perfect mix for top managers, sales teams and even customers.

BI (and Information Management) is a natural fit for mobile devices.  Managers, blue and white workers spend a majority of their time away from their desks. Most are traveling, walking about or driving from site to site. And it’s these mobile workers who need the most up-to-date information. They need mobile BI to retrieve data to make on-the-spot decisions, monitor operational processes and review KPI, and work-in-process dashboards.

Read more »

2
May

BI, Analytics, Reporting Center of Excellence (CoE)


Everyone has data, but the more elusive goal is getting value out of that data  The growing challenge in corporations is how to organize for “data as a platform.” What is the right organizational structure that will help monetize data?

John Wanamaker, considered a pioneer in modern advertising, said: “Half the money I spend on advertising is wasted; the problem is I don’t know which half.” Today, we can say the same of enterprise investment in business intelligence (BI), analytics, and big data.

Even after doing their best for over 20 years to build centralized, scalable information architecture, I found that only a small percentage of organizations’ data is actually converted to useful information in time to leverage it for better insight and decisions.

At both strategic and tactical levels, much of this gap can be explained by the fundamental disconnect in goals, objectives, priorities, and methods between IT professionals and the business users they should ideally serve.

The other challenge facing leadership is the rapid evolution of the data platform (see below.)  How do you create strategies that adapt to a changing landscape?

Evolution of Data Platform

Leadership Challenge

How do you become a world-class data-driven firm? What portfolio of projects do you execute to mature the capabilities?

If you’re an executive, manager, or team leader, one of your toughest responsibilities is managing and organizing your BI, Reporting or Analytics initiative. While the nuances – skillsets, toolsets and datasets — are different for each initiative, the fundamentals of managing, organizing and structuring are pretty much the same.

Almost every Fortune 1000 company’s management is increasingly focused on monetizing small data, big data or fast data, and how to gain a real-time competitive edge from their information. How can firms achieve positive returns on their analytic investments by taking advantage of the growing amounts of data?

So what’s the right organizational model that will help them achieve the “ten second advantage”? Competency Centers, Centers of excellence (CoE) or Shared Services models are execution models to enable the corporate or strategic vision to create an enterprise that uses data and analytics for business value.

BI CoE Slide

The goal of every World-class CoE is the same – enable the right combination of toolsets, skillsets, mindsets and datasets for better, faster, cheaper and more repeatable analytics, reporting or platform development.

Evolution of BI/Reporting/Analytics

  • Data is Growing Faster than Budgets
  • Demand is Growing, Speed to Insight is Crucial
  • Modifying large, existing applications is NOT the path forward.
  • Skills are lagging.. New tooling

As a result, Enterprise BI and Analytics strategies need to evolve.  The evolution tends to happen in 3 phases:

  • Department Solutions – Many companies deploy Analytics (and BI) applications as departmental solutions, and in the process, accumulate a large collection of disparate BI technologies – SAP Business Objects, IBM Cognos, Microstrategy, Oracle OBIEE, Microsoft, Qlikview, Tableau, Spotfire etc. – as a result. Each distinct technology supported a specific user population and database, within a well-defined “island of analytics.” At first, these dept islands satisfied the initial needs of the business, but early success in departmental deployment sowed the seeds for new problems as the applications grew.
  • Successful applications and platforms always expand. The second phase of Analytics (and BI) is where there is tremendous growth and  platform solutions are longer isolated islands. Instead, they overlap in user populations, data access, and analytic coverage. As a result, organizations are now faced with an untenable situation. The enterprise is getting conflicting versions of the truth through the multiple disparate BI systems, and there is no way to harmonize them without an extraordinary ongoing manual effort of synchronization, validation and quality checks. Equally problematic is the fact that business users are forced to use many different BI tools depending on what data they want.
  • The third phase of Analytics (and BI)  is one where the executives had enough. They simply make a decision to rationalize to a single platform or a centralized model that is sold as a “magic nirvana” solution…delivers one version of the truth (golden source of data) to all people across the enterprise. It can access all of the data, administer all of the people, eliminate repetitive data access, reduce the administrative effort, and reduce the time to deploy new BI applications.

“Time to decisions, scope of decisions, disconnected toolsets and cost of decisions” is deemed unacceptable within & across functional areas.  This typically drives a new phase… centralized BI, Reporting or Analytics CoE.

For example, at a Fortune 500 company, costly self-service environment, static reports, departmental solutions and other issues (shown below) forced them to re-think and re-engineer their enterprise BI solution. The firm set new target objectives…(1) Shorter time to insights; (2) Greater leverage for analytics team; (3) Accelerated product innovation and (4) 20% reduction in BI support costs.

While centralization of BI, Reporting and Analytics can enable organizations to reduce their IT delivery costs by up to 40%. However, a failure to align the level of BI, Reporting and Analytics centralization closely to long-term business and IT strategic goals and to manage the transition to centralized delivery carefully can not only erode expected savings from centralization, it can increase the cost of delivering IT services by up to 30-45% compared to a pre-centralization baseline.  This where good management can make a big difference.

BusinessChallengeFortune500

BI CoE Elements for Faster, Better, Cheaper Execution

BI CoE (could be Analytics CoE,  Big Data CoE or Integration CoE) is an organizing mechanism to align People,  Process,  Technology and  Culture.  The target benefits include:

  • Better collaboration between Business and IT
  • Increased adoption and use of BI and Analytics in the lines of business.
  • Better data management, quality and reporting
  • Cost savings from eliminating redundant functions

CoE elements include:

ElementsofCoE

Read more »

1
May

The Vendor Landscape of BI and Analytics


“In God we trust, all others bring data”
—————————-

The “Raw Data -> Aggregated Data -> Intelligence -> Insights -> Decisions” is a differentiating causal chain in business today.  To service this “data->decision” chain a very large industry is emerging.

The Business Intelligence, Performance Management and Data Analytics is a large confusing software category with multiple sub-categories — mega-vendors (full stack, niche vendors, data discovery, visualization, data appliances, Open Source, Cloud – SaaS, Data Integration, Data Quality, Mobile BI, Services and Custom Analytics).

But the interest in BI and analytics is surging. Arnab Gupta, CEO of Opera states why analytics are taking center stage, “We live in a world where computers, not people, are in the driver’s seat. In banking, virtually 100% of the credit decisions are made by machines. In marketing, advanced algorithms determine messages, sales channels, and products for each consumer. Online, more and more volume is spurred by sophisticated recommender engines. At Amazon.com, 40% of business comes from its “other people like you bought…” program.”  (Businessweek, September 29, 2009).

Here is a list of vendors who participate in this marketspace:

Read more »

%d bloggers like this: